3.918 \(\int \frac {\cos (e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx\)

Optimal. Leaf size=60 \[ \frac {d (c+d \sin (e+f x))^{n+1} \, _2F_1\left (2,n+1;n+2;\frac {c+d \sin (e+f x)}{c-d}\right )}{a^2 f (n+1) (c-d)^2} \]

[Out]

d*hypergeom([2, 1+n],[2+n],(c+d*sin(f*x+e))/(c-d))*(c+d*sin(f*x+e))^(1+n)/a^2/(c-d)^2/f/(1+n)

________________________________________________________________________________________

Rubi [A]  time = 0.11, antiderivative size = 60, normalized size of antiderivative = 1.00, number of steps used = 2, number of rules used = 2, integrand size = 31, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.065, Rules used = {2833, 68} \[ \frac {d (c+d \sin (e+f x))^{n+1} \, _2F_1\left (2,n+1;n+2;\frac {c+d \sin (e+f x)}{c-d}\right )}{a^2 f (n+1) (c-d)^2} \]

Antiderivative was successfully verified.

[In]

Int[(Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x])^2,x]

[Out]

(d*Hypergeometric2F1[2, 1 + n, 2 + n, (c + d*Sin[e + f*x])/(c - d)]*(c + d*Sin[e + f*x])^(1 + n))/(a^2*(c - d)
^2*f*(1 + n))

Rule 68

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((b*c - a*d)^n*(a + b*x)^(m + 1)*Hype
rgeometric2F1[-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b^(n + 1)*(m + 1)), x] /; FreeQ[{a, b, c, d, m
}, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] && IntegerQ[n]

Rule 2833

Int[cos[(e_.) + (f_.)*(x_)]*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)
])^(n_.), x_Symbol] :> Dist[1/(b*f), Subst[Int[(a + x)^m*(c + (d*x)/b)^n, x], x, b*Sin[e + f*x]], x] /; FreeQ[
{a, b, c, d, e, f, m, n}, x]

Rubi steps

\begin {align*} \int \frac {\cos (e+f x) (c+d \sin (e+f x))^n}{(a+a \sin (e+f x))^2} \, dx &=\frac {\operatorname {Subst}\left (\int \frac {\left (c+\frac {d x}{a}\right )^n}{(a+x)^2} \, dx,x,a \sin (e+f x)\right )}{a f}\\ &=\frac {d \, _2F_1\left (2,1+n;2+n;\frac {c+d \sin (e+f x)}{c-d}\right ) (c+d \sin (e+f x))^{1+n}}{a^2 (c-d)^2 f (1+n)}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.07, size = 61, normalized size = 1.02 \[ \frac {d (c+d \sin (e+f x))^{n+1} \, _2F_1\left (2,n+1;n+2;-\frac {c+d \sin (e+f x)}{d-c}\right )}{a^2 f (n+1) (d-c)^2} \]

Antiderivative was successfully verified.

[In]

Integrate[(Cos[e + f*x]*(c + d*Sin[e + f*x])^n)/(a + a*Sin[e + f*x])^2,x]

[Out]

(d*Hypergeometric2F1[2, 1 + n, 2 + n, -((c + d*Sin[e + f*x])/(-c + d))]*(c + d*Sin[e + f*x])^(1 + n))/(a^2*(-c
 + d)^2*f*(1 + n))

________________________________________________________________________________________

fricas [F]  time = 0.52, size = 0, normalized size = 0.00 \[ {\rm integral}\left (-\frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )}{a^{2} \cos \left (f x + e\right )^{2} - 2 \, a^{2} \sin \left (f x + e\right ) - 2 \, a^{2}}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="fricas")

[Out]

integral(-(d*sin(f*x + e) + c)^n*cos(f*x + e)/(a^2*cos(f*x + e)^2 - 2*a^2*sin(f*x + e) - 2*a^2), x)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="giac")

[Out]

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

maple [F]  time = 3.90, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (f x +e \right ) \left (c +d \sin \left (f x +e \right )\right )^{n}}{\left (a +a \sin \left (f x +e \right )\right )^{2}}\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(f*x+e)*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)

[Out]

int(cos(f*x+e)*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {{\left (d \sin \left (f x + e\right ) + c\right )}^{n} \cos \left (f x + e\right )}{{\left (a \sin \left (f x + e\right ) + a\right )}^{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(c+d*sin(f*x+e))^n/(a+a*sin(f*x+e))^2,x, algorithm="maxima")

[Out]

integrate((d*sin(f*x + e) + c)^n*cos(f*x + e)/(a*sin(f*x + e) + a)^2, x)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.02 \[ \int \frac {\cos \left (e+f\,x\right )\,{\left (c+d\,\sin \left (e+f\,x\right )\right )}^n}{{\left (a+a\,\sin \left (e+f\,x\right )\right )}^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((cos(e + f*x)*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x))^2,x)

[Out]

int((cos(e + f*x)*(c + d*sin(e + f*x))^n)/(a + a*sin(e + f*x))^2, x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(f*x+e)*(c+d*sin(f*x+e))**n/(a+a*sin(f*x+e))**2,x)

[Out]

Timed out

________________________________________________________________________________________